Package: petersenlab 1.1.0
petersenlab: A Collection of R Functions by the Petersen Lab
A collection of R functions that are widely used by the Petersen Lab. Included are functions for various purposes, including evaluating the accuracy of judgments and predictions, performing scoring of assessments, generating correlation matrices, conversion of data between various types, data management, psychometric evaluation, extensions related to latent variable modeling, various plotting capabilities, and other miscellaneous useful functions. By making the package available, we hope to make our methods reproducible and replicable by others and to help others perform their data processing and analysis methods more easily and efficiently. The codebase is provided in Petersen (2024) <doi:10.5281/zenodo.7602890> and on CRAN: <doi:10.32614/CRAN.package.petersenlab>. The package is described in "Principles of Psychological Assessment: With Applied Examples in R" (Petersen, 2024) <doi:10.1201/9781003357421>, <doi:10.5281/zenodo.6466589>.
Authors:
petersenlab_1.1.0.tar.gz
petersenlab_1.1.0.zip(r-4.5)petersenlab_1.1.0.zip(r-4.4)petersenlab_1.1.0.zip(r-4.3)
petersenlab_1.1.0.tgz(r-4.4-any)petersenlab_1.1.0.tgz(r-4.3-any)
petersenlab_1.1.0.tar.gz(r-4.5-noble)petersenlab_1.1.0.tar.gz(r-4.4-noble)
petersenlab_1.1.0.tgz(r-4.4-emscripten)petersenlab_1.1.0.tgz(r-4.3-emscripten)
petersenlab.pdf |petersenlab.html✨
petersenlab/json (API)
# Install 'petersenlab' in R: |
install.packages('petersenlab', repos = c('https://devpsylab.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/devpsylab/petersenlab/issues
data-analysisdata-analysis-in-rdata-managementpsychometrics
Last updated 5 days agofrom:aa77eb06f3. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 18 2024 |
R-4.5-win | OK | Nov 18 2024 |
R-4.5-linux | OK | Nov 18 2024 |
R-4.4-win | OK | Nov 18 2024 |
R-4.4-mac | OK | Nov 18 2024 |
R-4.3-win | OK | Nov 18 2024 |
R-4.3-mac | OK | Nov 18 2024 |
Exports:%ni%accuracyAtCutoffaccuracyAtEachCutoffaccuracyOveralladdTextapaattenuationCorrelationcleanUpNamescolumnBindFillcomplementcomputeItemFrequenciescomputeLifetimeFrequenciesconvert.magicconvertHoursAMPMconvertToHoursconvertToMinutesconvertToSecondscor.tablecrossTimeCorrelationcrossTimeCorrelationDFd_negBinomderiv_d_negBinomderiv_logd_negBinomdisattenuationCorrelationdiscriminationToFactorLoadingdropColsWithAllNAdropRowsWithAllNAequiv_chifourPLgetDependenciesimputationCombineimputationModelCompareimputationPRVinfo_neg_binom_analyticalitem_info_NB_zero_analyticalitemInformationkish_esslmCombinelmeSummaryload_or_installlog_gen_binommake_esem_modelmark_intensity_as_zeromeanSumModemortgagemy_loadings_sortermySumnomogrammernot_all_nanot_any_naoptimalCutoffpApAgivenBpAgivenNotBpartialcor.tablepBpBgivenApBgivenNotApercentEffortpercentileToTScorepersonMonthsplot2WayInteractionpomposttestOddsposttestProbabilityppPlotpucpValueread.aesrecode_intensityredcapProgressBarreliabilityIRTreliabilityOfDifferenceScorerepeatabilityreverse_scoresatorraBentlerScaledChiSquareDifferenceTestStatisticsemPlotInteractionsetLabPathsimulateAUCsimulateIndirectEffectspecify_decimalstandardErrorIRTsuppressLeadingZerotimesPerIntervaltimesPerLifetimeupdate_nestedvarsDifferentTypesvwRegwhdquantilewisdomOfCrowdwquantilewquantile_genericwrite.aeswthdquantile
Dependencies:backportsbase64encbslibcachemcheckmatecliclustercolorspacedata.tableDBIdigestdplyrevaluatefansifarverfastmapfontawesomeforeignFormulafsgenericsggplot2glueGPArotationgridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsisobandjquerylibjsonliteknitrlabelinglatticelavaanlifecyclemagrittrMASSMatrixmemoisemgcvmimemitoolsmixmnormtmunsellmvtnormnlmennetnumDerivpbivnormpillarpkgconfigplyrpsychpurrrquadprogR6rappdirsRColorBrewerRcppreshape2rlangrmarkdownrpartrstudioapisassscalesstringistringrtibbletidyselecttinytexutf8vctrsviridisviridisLitewithrxfunxtableyaml